Updates on Lung Cancer

Andre L. Moreira MD PhD New York university Langone Health

Concentrate in adenocarcinoma

* Review current concepts in

- * Definition of invasion in adenocarcinoma
- Non-traditional patterns
- * Grading system

Rationale for new adenocarcinoma classification

- * Adenocarcinoma: the most common histologic subtype
- * Widely divergent clinical, radiologic, molecular & pathologic spectrum
- * Rapidly evolving molecular advances

Jemal A, Travis WD, Tarone RE, et al. Int J Cancer 2003; 105: 101-107.

W.H.O. Classification 2014

Pre-invasive lesions

- -Atypical adenomatous hyperplasia
- -Adenocarcinoma in situ (≤3 cm, formerly BAC pattern)

Minimally-invasive adenocarcinoma (≤3 cm, a lepidic predominant tumor with ≤5mm invasion)

Invasive adenocarcinoma

Travis WD, Brambilla E, Riely GJ. J Clin Oncol 2013; 31: 992-1001.

Atypical adenomatous hyperplasia

Less than 3mm in greatest dimension, discontinuous proliferation of atypical pneumocytes, Absence of inflammation

Adenocarcinoma in situ

Pure lepidic pattern without stromal, lymphatic or pleural invasion

Adenocarcinoma in situ

- Ground-glass opacity (GGO)
- * In general less than 3 cm

Minimally-invasive adenocarcinoma (MIA)

- * New concept!
- * Predominant lepidic adenocarcinoma with an area of invasion that is equal or less than 0.5 cm
- * Has an excellent prognosis similar to Adenocarcinoma in situ: 100% disease free survival in 5 years.

Travis WD, Brambilla E, Riely GJ. J Clin Oncol 2013; 31: 992-1001.

Minimally-invasive adenocarcinoma nonmucinous

Minimally-invasive adenocarcinoma nonmucinous

- * Often a mixture of GGO and solid component
- * Less than 3 cm

How can I measure invasion?

- * Problems:
- * invasive patterns versus lepidic
- * collapse alveoli versus invasion versus needle track, do I need elastic stains?
- * -fibrosis due to invasion versus scar
- * multiple foci of invasion

Invasive patterns versus lepidic

- * Several articles showed that the reproducibility for determination of invasion is poor among experts!
- * Thunnissen E et al Modern Path.2012
- Shih AR et al Histopathology. 2019 (epub ahead of print)

Thunnissen e et al. Modern Path 2012

Thunnissen e et al. Modern Path 2012

Lepidic or acinar?

Thunnissen E et al. 2102. Modern Path

Collapse alveoli versus invasion

- * The reproducibility of the diagnosis of invasion is poor!
- * The classification allows for thickening of the alveolar septae in the diagnosis of AIS, but not desmoplasia.
- * The determination of desmoplasia is not clear.
- * Emerging concept of "collapsed alveoli"

Thunnissen E et al. 2102. Modern Path

Elastic stain anyone?

- * There are suggestions that an elastic stain can distinguish between collapse (preserved) and desmoplasia (disrupted).
- * Elastic stain is difficult to perform and to interpret.
- * There are suggestions that elastic frame is retained in papillary pattern.
- * There is no consensus on what represents invasion in lepidic predominant adenocarcinoma

Fibrosis due to invasion versus scar

- * How to measure the area of invasion, once you are confident that you have invasion?
- * Do I include the area of scar or not?
- * There are no clear recommendations in the IASLC/ERS/ATS document.
- * Some authors have included the area of scar within the measurement in their definition of MIA.

Multiple foci of invasion

- * measure the largest focus of invasion instead of " adding up" all measurements of smaller foci.
- * Determine the percentage of the invasive component and calculate the measurement

Case B, Multiple areas of invasion

- * Direct measurement:
- * total size 1.2 cm, Invasive 0.8 cm (with scar)- lepidic predominant (LPP)adenocarcinoma
- * Percentage:
- * 30% invasion = 0.36 cm (MIA)
- * 40% invasion = 0.48 cm (MIA)
- * 50% invasion = 0.6 cm (LPP)
- * 60% invasion = 0.72 cm LPP)

Summary

- * Difficult to diagnosis lepidic predominant tumors because the criteria are new, which can generate a lot of confusion!!
- * Rare cases!
- * Does it really matter?
- There is no difference in prognostic significance between an AIS and MIA
- * If the area of doubt is larger than 5 mm, best call it a lepidic predominant adenocarcinoma (personal opinion!!)

IASLC/ATS/ERS Adenocarcinoma classification

Invasive adenocarcinoma (invasive component is > 0.5 cm)

Lepidic pattern predominant

Acinar pattern predominant

Papillary pattern predominant

Micropapillary pattern, predominant

Solid pattern predominant

New problems: other non-traditional patterns (cribriform, fused glands, etc.)

Older problems: Reproducibility

Lepidic predominant

Acinar

Papillary

Micropapillary

Solid

Invasive adenocarcinoma

Stage I adenocarcinoma (N=514)

Recurrence-free survival(RFS) by IASLC histologic type

Lepidic

- Acinar
- Papillary

Solid

Micropapillary
 Complex glandular patterns

Sica G, Moreira AL *et al*. A Grading System of Lung Adenocarcinomas Based on Histologic Pattern is Predictive of Disease Recurrence in Stage I Tumors. American Journal of Surgical Pathology. 34(8):1155-1162, August 2010.

DEFINITION OF COMPLEX GLANDULAR PATTERNS (CGP):

* CRIBRIFORM:

* Solid nests of tumor cells with sieve-like perforations

* FUSED-GLANDS:

* Fused glands and back-to-back glands with irregular borders or ribbon-like formation

- Complex glandular patterns include:
 - Cribriform pattern
 - Fused glands
- * Patterns not recognized in the last IASLC/ATS/ERS classification, therefore, difficult to classify

PROGNOSIS VALUE OF CGP

Moreira Al et al Hum Pathol, 2014, 45:213-20

The current classification hints at a grading system

Problems with one pattern

- * What to do with the intermediate grade group?
- > >50 % of all adenocarcinoma
- Very heterogenous group

Proposals to help in grading-modifiers

- * Nuclear grade
- * Mitotic count
- Cytology grade
- * STAS (spread through alveolar space)
- Secondary patterns

Grading system

- Evaluate and create an objective grading system for invasive adenocarcinoma
- Evaluate the best model to predict outcome (RFS and OS)
- Evaluate pattern combinations
- Significance of modifiers (STAS, Nuclear grade, cytology grade, etc)
- Establish if there is a Cut-off of high grade pattern that is associated with recurrence/death of disease
- Reproducibility assay

Experimental model

- Evaluate 5 independent dataset provided by IASLC pathology committee
- * Training set n= 284 (Stage 1)- evaluate multiple histological parameters role of modifiers and devise the model
- * What is the best and practical model
- * Validation N= 212 (Stage 1) 2 combined data sets
- * Test set stage 1 N= 303 (Stages 1 and 2) 2 combined datasets

Histological pattern- Training set

Patient Characteristics Statistics (N = 284)					
			Recurrence =	Recurrence =	P-value
			Yes	No	
		Total	(N = 66)	(N = 218)	
	Acinar	129(45%)	21(32%)	108(50%)	<0.0001
Predominant Histologic Pattern	Cribriform	3(1%)	0(0%)	3(1%)	
	Fused glands	16(6%)	10(15%)	6(3%)	
	Lepidic	20(7%)	0(0%)	20(9%)	
	Micropapillary	21(7%)	10(15%)	11(5%)	
	Papillary	55(19%)	10(15%)	45(21%)	
	Solid	40(14%)	15(23%)	25(11%)	

Histological modifiers

Patient Characteristics Statistics (N = 284)					
		Total	Recurrence = Yes (N = 66)	Recurrence = No (N = 218)	P-value
Mitotic count	1 (0-1/10 hpf)	201(71%)	36(55%)	165(76%)	0.0003
	2 (2-4/10 hpf)	48(17%)	13(20%)	35(16%)	
	3 (>5/10 hpf)	35(12%)	17(26%)	18(8%)	
Nuclear Grade	1	126(44%)	16(24%)	110(50%)	<mark>0.0001</mark>
	2	98(35%)	26(39%)	72(33%)	
	3	60(21%)	24(36%)	36(17%)	
Cytologic grade	High	87(31%)	34(52%)	53(24%)	<0.0001
	Low	197(69%)	32(48%)	165(76%)	
STAS	Absent	264(93%)	55(83%)	209(96%)	0.001
	Present	20(7%)	11(17%)	9(4%)	

Variables in the model	Recurrence		Variables in the model	Death	
	C-index	AUC		C-index	AUC
Baseline	0.595	0.611	Baseline	0.627	0.620
Baseline + Dominant	0.684	0.691	Baseline + Dominant	0.702	0.700
Baseline + Dominant + Secondary	0.728	0.740	Baseline + Dominant + Secondary	0.763	0.755
Baseline + Dominant + Worst	0.727	0.725	Baseline + Dominant + Worst	0.747	0.726

Role of modifiers

Variables in the model	Recurrence		Variables in the model	Death	
Baseline + Dominant + Secondary + Mitotic count + Nuclear grade + Cytologic grade + STAS	0.741	0.746	Baseline + Dominant + Secondary + Mitotic count + Nuclear grade + Cytologic grade + STAS	0.775	0.761
-Mitotic count, cytology grade, and STAS	0.743	0.748	-Nuclear grade, Cytology Grade, STAS	0.787	0.769
-Cytology Grade and STAS	0.741	0.752	-Nuclear grade and STAS	0.785	0.768
STAS	0.740	0.752	STAS	0.785	0.765

Summary

Model#1

- * Baseline = 0.611
- Best predictor of recurrence
 (predominant + secondary pattern)=
 0.740 and OS 0.755
- * STAS was the best modifier = 0.752
- Modifiers have different weights between RFS and OS
- * Modifiers = do not add significantly to the model, improvement is not statistical significant

Model#2

- Predominant plus worse pattern
- Easier for pathologists
- * Recurrence = 0.725, OS= 0.726
- Modifiers did not add significantly to the model
- * There is no significant difference between model#1 and #2

Model for grading

* Similar performance in a 4 different data sets from different institutions and countries

Predominant + worse

- Well-differentiated (grade 1)
- Lepidic predominant + Acinar/papillary
- Moderately Differentiated (grade 2)
- * Acinar/Papillary predominant + no high grade or less than 20%
- Poorly-Differentiated (grade 3)
- High grade pattern + any other pattern
- * AC/PA/LP = high grade pattern >20%

Take home message

- Objective grading for adenocarcinoma is possible
- Could help in future studies to determine influence of therapy in adenocarcinomas as a common language to evaluate tumor heterogeneity
- Strength of this study: the model had a consistent performance in difference data sets which prevents institutional biases!