### Myelodysplastic Syndromes (MDS)

- Clonal neoplasms of marrow stem/progenitors
- Cytopenias
- Dysplasia w/ineffective hematopoiesis
- Increased risk of blastic transformation







### Implications of discrepancy in morphologic diagnosis of MDS between referral and tertiary care centers



Discordance in the diagnosis was documented in 109 (12%) patients, with a majority reclassified as having higherrisk disease



Kiran Naqvi, et al. *Blood*. 2011;118(17):4690-4693





### **Clinical History**

- 47 year-old man with refractory anemia and hypocellular bone marrow with dysmegakaryopoiesis and IPSS score of 0
- 46,XY[5]
- Over the next 12 months he developed worsening cytopenias and died

### Hypoplastic MDS



### Cytogenetic Scoring System



J Clin Oncol. 2012 Mar 10;30(8):820-9.





### Clinical History

- 50 year-old woman with an 11-month history of acquired aplastic anemia
- Antithymocyte globulin, corticosteroid, cyclosporine
- CBC: WBC (1.0 K/uL), hemoglobin (8 g/dL) and platelet count (12 K/uL), 45% neutrophils, 1% blast

### MDS Arising in a Patient With Aplastic Anemia



- 10% blasts in touch imprint
- 46,XX,t(3;21)(q26.2;q22),del(7)(q22q34)[9]

### Bone Marrow Referral July 2014



- Aparticulate clot and smear
- Hypocellular bone marrow (10%) with myeloid and megakaryocytic hypoplasia

| Marker        |                               |
|---------------|-------------------------------|
| CD42b         | Rare, no<br>hypolobated forms |
| МРО           | Myeloid cells<br>decreased    |
| Glycophorin   | Erythroid cells predominate   |
| CD34 or CD117 | 0% blasts                     |





### **Histologic Features of MDS**

### **Trephine biopsy**

- Cellularity (hypoplastic MDS)
- Myelofibrosis (reticulin, MDS with fibrosis)
- Report % CD34+ blasts & cluster
- Dysmegakaryopoiesis (CD61)

Della Porta MG, et al. Leukemia 2014, 1-10

# Morphological & Immunohistochemical Features of BM Biopsy in MDS



### Recommended IHC Markers in MDS

|                                              | Markers              | Cell type(s)                                |
|----------------------------------------------|----------------------|---------------------------------------------|
|                                              | CD34                 | Blast cells, progenitors, endothelial cells |
| Minimal panel                                | CD31 or CD42 or CD62 | Megakaryocytes                              |
|                                              | Tryptase             | Mast cells, basophils, myeloid              |
|                                              | CD3                  | T cells                                     |
|                                              | CD15                 | Monocytes, granulocytes                     |
|                                              | CD20                 | B cells                                     |
| Extended panel –                             | CD25                 | T and B cell subset, atypical mast cells    |
| according to the cell lineage to be examined | CD138                | Plasma cells                                |
|                                              | CD68                 | Monocytes, macrophages, myeloid cells       |
|                                              | Lysozyme             | Monocytes, macrophages                      |
|                                              | CD117                | Progenitor cells, mast cells                |



# Exclude hematopoietic and non-hematopoietic disorders as reason for cytopenia/dysplasia:

- Reticulocyte counts
- Chemistries
- Transaminases
- Bilirubin
- Hepatitis serologies
- PNH aerolysin assay

- Medications
- Exposures
- Transfusions
- Splenomegaly
- Hepatomegaly
- Lymphadenopathy
- Family history





### Minimal Diagnostic Criteria in MDS

### **Prerequisite criteria**

- Constant cytopenia in one or more of the following cell lineages erythroid (WHO hemoglobin <10 g dL)</li>
- Neutrophilic (ANC <1800  $\mu$ L) or megakaryocytic (platelets <100,000  $\mu$ L)

Greenberg PL, et al. J Natl Compr Canc Netw 2017;15(1):60-87

### Minimal Diagnostic Criteria in MDS

### MDS-related (decisive) criteria

- Dysplasia in at least 10% of all cells in one of the following lineages in the bone marrow smear; erythroid; neutrophilic; or megakaryocytic or > 15% ringed sideroblasts
- 5-19% Blast of all nucleated cells in bone marrow MDSassociated karyotype

Greenberg PL, et al. J Natl Compr Canc Netw 2017;15(1):60-87
Valent P, et al. Leukemia Research 2007:727-736



### Minimal Diagnostic Criteria in MDS

### Co-criteria:

- Typical clinical features, macrocytic transfusion-dependent anemia
- Abnormal phenotype by flow cytometry of BM cells indicative of a monoclonal population
- Abnormal BM histology & IHC (abnormal CD34, fibrosis, dysplastic megs, abnormal localization of immature progenitors)
- Molecular: Monoclonal myeloid population

Greenberg PL, et al. J Natl Compr Canc Netw 2017;15(1):60-87 Valent P, et al. Leukemia Research 2007:727-736





### MDS-related cytogenetic abnormalities

```
Unbalanced
 +8*
 -7 or del(7q)
  -5 or del(5q)
 del(20q)*
 -Y*
 i(17q) or t(17p)
 -13 or del(13q)
 del(11q)
 del(12p) or t(12p)
 del(9q)
 idic(X)(q13)
```

```
Balanced
t(11;16)(q23;p13.3)
t(3;21)(q26.2;q22.1)
t(1;3)(p36.3;q21.2)
t(2;11)(p21;q23)
inv(3)(q21q26.2)
t(6;9)(p23;q34)
```

-Y, trisomy 8 and del(20q) not disease defining



# MDS with Deletion of Chromosome 5q:Persistent Malignant Stem cells in Remission





# Proposal: Provisional entity Myelodysplastic/ Myeloproliferative Neoplasm with isolated isochromosome 17q

Carlos E. Bueso-Ramos

The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

### Key clinicopathologic features

- Splenomegaly
- Leukocytosis, monocytosis, basophilia
- Fibrosis
- Granulocytic dysplasia
- Megakaryocytic dysplasia
- Features of aCML, CMML (2008 WHO)





## TP53 mutations absent in myeloid neoplasms with isolated i(17q)



- Sequencing of the entire coding region including 5' and 3' UTR
  - Wild type in 16/16 cases (6 AML; 10 MDS/MPN)

### Clinical outcome



 Aggressive clinical course irrespective of the blast count or WHO classification

### Summary

- Suspected in any myeloid neoplasm associated with MDS/MPN features
- A high risk for leukemic progression
- SETBP1 mutations in ~54% cases and Co-occurred frequently with ASXL1 mut and isolated i(17)(q10)
- No P53 mutations
- Primary MDS with i(17q): Intermediate prognostic group

### Morphological Features of PB in MDS



### Features of MDS in BM



### Morphologic Features of MDS

#### **ORIGINAL ARTICLE**

Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes

MG Della Porta<sup>1,2,13</sup>, E Travaglino<sup>1,13</sup>, E Boveri<sup>3,13</sup>, M Ponzoni<sup>4</sup>, L Malcovati<sup>1,5</sup>, E Papaemmanuil<sup>6</sup>, GM Rigolin<sup>7</sup>, C Pascutto<sup>1</sup>, G Croci<sup>3,5</sup>, U Gianelli<sup>8</sup>, R Milani<sup>4</sup>, I Ambaglio<sup>1</sup>, C Elena<sup>1</sup>, M Ubezio<sup>1,5</sup>, MC Da Via<sup>1,5</sup>, E Bono<sup>1,5</sup>, D Pietra<sup>1</sup>, F Quaglia<sup>2</sup>, R Bastia<sup>2</sup>, V Ferretti<sup>1</sup>, A Cuneo<sup>7</sup>, E Morra<sup>9</sup>, PJ Campbell<sup>6,10,11</sup>, A Orazi<sup>12</sup>, R Invernizzi<sup>2,14</sup> and M Cazzola<sup>1,5,14</sup> on behalf of Rete Ematologica Lombarda (REL) clinical network

Della Porta MG, et al. Leukemia 2015



### Erythoid lineage

| Morphological abnormalities              | Cutoff<br>values | Variable<br>weighted score |
|------------------------------------------|------------------|----------------------------|
| Megaloblastoid changes                   | > 5%             | 2                          |
| Di ar multinuclearity                    | > 3%             | 1                          |
| Bi- or multinuclearity                   | > 5%             | 2                          |
| Nuclear lobulation or irregular contours | > 3%             | 1                          |
| Pyknosis                                 | > 5%             | 1                          |
| Cytoplasmic fraying                      | ≥ 7%             | 1                          |
| Ding siderablests                        | > 5%             | 2                          |
| Ring sideroblasts                        | ≥ 15%            | 3                          |
| Ferritin sideroblasts                    | ≥ 30%            | 1                          |



Della Porta MG, et al. Leukemia 2015





### Granulocytic lineage

| Morphological abnormalities | Cutoff<br>values | Variable<br>weighted<br>score |
|-----------------------------|------------------|-------------------------------|
| Myoloblasts                 | > 3%             | 1                             |
| Myeloblasts                 | > 5%             | 3                             |
| Auer rods                   | ≥ 1%             | 3                             |
| Daguda Dalgar, Hüst anamakı | > 3%             | 1                             |
| Pseudo Pelger–Hüet anomaly  | > 5%             | 2                             |
| Abnormal nuclear shape      | ≥ 7%             | 1                             |
| Noutrophil hypograpulation  | > 3%             | 1                             |
| Neutrophil hypogranulation  | > 5%             | 2                             |







### Megakaryocytic lineage

| Morphological abnormalities                   | Cutoff<br>values | Variable<br>weighted<br>score |
|-----------------------------------------------|------------------|-------------------------------|
| Micromegakaryocytes                           | > 5%             | 3                             |
| Small binucleated megakaryocytes              | > 5%             | 1                             |
| Megakaryocytes with multiple separated nuclei | > 5%             | 2                             |
| Hypolobated or monolobar megakaryocytes       | > 5%             | 2                             |



Della Porta MG, et al. Leukemia 2015





### FCI Positive for MDS

- Increase in CD34+ blasts with aberrancies
- Expression of lymphoid antigens CD2, CD5, CD7, CD56, CD10, CD19
- Lack of Hematogones
- Discrete population
- Alteration of CD45, CD117, CD123, CD38, CD33/CD13
- Hypogranulation
- Myelomonocytic maturation alterations

### Hypoplastic MDS and Aplastic Anemia

| Bone marrow Examination | Aplastic Anemia                                                                                                | Hypoplastic MDS                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Erythroid               | Lack, or small erythroid clusters (<10 cells/cluster), mild dyserythropiesis. Low corrected reticulocyte count | Patchy distribution of erythroids, left-<br>shifted. Moderate Dyserythropoiesis |
| Megakaryocytes          | Often absent, or too few to assess                                                                             | Reduced, dysplastic hypolobulated, multinucleated                               |
| Myeloid cells           | Decreased, dysgranulopoiesis is mild                                                                           | Decreased, more pronounced dysplasia More discernible CD34+, in clusters        |
| CD34 blasts             | Decreased to absent (<1%)                                                                                      |                                                                                 |
| Architecture            | Normal                                                                                                         | Altered                                                                         |
| Reticulin fibrosis      | Absent                                                                                                         | Present in 20% cases                                                            |



### Hypoplastic MDS and Aplastic Anemia

| Bone marrow Examination             | Aplastic Anemia                                                                                                                                                | Hypoplastic MDS                                                                                                              |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Flow Cytometry<br>Immunophenotyping | Blasts with normal phenotype Hematogones are present PNH clones GPI-AP-deficient in 25% (0.1%-15% GPI-AP- cells) No hemolysis nor thrombosis Clonal evolution? | Blasts show aberrancies Hematogones reduced PNH clones seen in 9% cases, smaller GPI-AP- cells. No hemolysis, nor thrombosis |
| Cytogenetics                        | Often normal A few can have cytogenetic abnormality                                                                                                            | 40-50% abnormal Fatty marrows may lead to cytogenetic failures                                                               |





### Aplastic Anemia and Hypoplastic MDS

| Clinical Data and Classification of Myelodysplasia |                |       |                |      |               |          |  |
|----------------------------------------------------|----------------|-------|----------------|------|---------------|----------|--|
| Age, y                                             | AA-MDS, months | RS, % | Classification | IPSS | Follow-up, mo | Survival |  |
| 52                                                 | 8              | 6     | RCMD           | 0.5  | 96            | Alive    |  |
| 53                                                 | 6              | 20    | RARS           | 0.5  | 39            | Alive    |  |
| 50                                                 | 11             | 12    | RCMD           | 0.5  | 130           | Alive    |  |
| 65                                                 | 43             |       | RCMD           | 1.5  | 82            | Dead     |  |
| 72                                                 | 16             |       | RCMD           | 1.5  | 24            | Alive    |  |
| 79                                                 | 2              |       | RAEB-1         | 2.0  | 37            | Dead     |  |
| 51                                                 | 7              |       | RA             | 1.5  | 45            | Alive    |  |
| 70                                                 | 17             | 4     | RA             | 1.5  | 33            | Dead     |  |
| 65                                                 | 2              |       | RCMD           | 1.0  | 85            | Alive    |  |
| 26                                                 | 2              |       | RCMD           | 1.0  | 11            | Alive    |  |
| 45                                                 | 9              | 3     | RA             | 1.5  | 18            | Alive    |  |
| 47                                                 | 36             | 5     | RAEB-1         | 2.0  | 50            | Dead     |  |

Cancer. 2007;110(7):1520-1526





### Comparison of Cytogenetics and FISH for Monosomy 7 at Diagnosis of AA and MDS

| At AA diagnosis      |              | At MDS diagnosis                                                                                                          |          |  |
|----------------------|--------------|---------------------------------------------------------------------------------------------------------------------------|----------|--|
| Cytogenetics FISH, % |              | Cytogenetics                                                                                                              | FISH, %  |  |
| 46,XX                | <u>—</u>     | 46,XX [20]                                                                                                                | <u>—</u> |  |
| 46,XX                | <del>_</del> | 46,XX [20]                                                                                                                | _        |  |
| 46,XX                | _            | 46,XX [20]                                                                                                                | 8        |  |
| 46,XX                | 17           | 45,XX,-7 [19]/46XX [1]                                                                                                    | _        |  |
| 46,XY 22             |              | 45,XY,-7 [14]/46XY [6]                                                                                                    | 47       |  |
| 46,XX                | <del></del>  | 45,XX,−7 [12]                                                                                                             | 71       |  |
| 46,XX —              |              | 45,XX,−7 [19]                                                                                                             | _        |  |
| 46,XY                | 4            | 45,XY,-7,8q+[22]                                                                                                          | 29       |  |
| 46,XX                | <del></del>  | 47,XX,+15 [3]/46,XX [17]                                                                                                  | 27       |  |
| 46,XX                | <del></del>  | 47,XX,+8 [3]/46XX [17]                                                                                                    | _        |  |
| 46,XX                | <u> </u>     | 50,XX,+X,+13,+19,+21[5]                                                                                                   | 28       |  |
| 46,XY —              |              | 46,XY,der(1)t(1;12)(p13;q13)del(12) (q21q24.3), der(9) (1;9)(p13;q13)ins(1;12)(p22;q21q24.3), der(12)t(9;12)(q31;q11)[20] | 22       |  |

Cancer. 2007;110(7):1520-1526





## Comprehensive Approach to Diagnose Low Risk MDS

A multidisciplinary evaluation and follow up

- Clinical history
- Morphology: dysplasia, blasts
- Cytogenetics, SNP array, NGS
- Immunophenotype: flow cytometry, IHC

Monitor the patient over time, repeat blood, marrow examinations and other studies as dictated by clinical circumstances

# ICUS vs. IDUS

|   | ICUS: Idiopathic Cytopenia                                                                                                      |   | IDUS: Idiopathic Dysplasia                                    |
|---|---------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------|
| • | Cytopenia (Hgb<11, neutrophils <1.5K, PLT <100K) persistent for at least 6 months                                               | • | Normal CBC                                                    |
| • | Does not meet minimal Dx criteria for MDS:  - >10% dysplastic cells or  - 5-19% blasts or  - Abnormal karyotype typical for MDS | • | Not meet minimal criteria for MDS                             |
| • | Other causes of cytopenia ruled out; carefully monitor                                                                          | • | Dysplastic changes:  - Pseudo-Pelger-Huet cells               |
| • | Does not require evidence of clonal population                                                                                  |   | <ul> <li>Megaloblastoid changes in<br/>normoblasts</li> </ul> |

Greenberg PL, et al. J Natl Compr Canc Netw 2017; 15(1): 60–87 Greenberg PL, et al. Blood 2016;128(16):2096-2097 Valent P, et al. Leukemia Research 2007:727-736



# Age-related clonal hematopoiesis



Genovese et al. N Engl J Med 2014;371:2477-87 Jaiswal S. N Engl J Med. 2014;371:2488





### CHIP: precursor for hematological neoplasms



Time

Sperling et al. Nat Rev Cancer. 2017 Jan;7(1):5-19 Steensma et al. Blood 2015;126:9-16





### Frequency of Somatic Mutations in MDS, CHIP and AA



| Mutation Prevalence | ≥50 | 20-49 | 10-19 | 5-9 | 1-4 |  |
|---------------------|-----|-------|-------|-----|-----|--|
|                     |     |       |       |     |     |  |

Luca Malcovati and Mario Cazzola Hematology 2015:299-307





# Spectrum of Indolent Myeloid Hematopoietic Disorders

| Feature                       | ICUS | IDUS | CHIP | ccus | MDS |
|-------------------------------|------|------|------|------|-----|
| Somatic mutation              | -    | -    | +/-  | +/-  | +/- |
| Clonal karyotypic abnormality | -    | -    | +/-  | +/-  | +/- |
| Marrow dysplasia              | -    | +    | -    | -    | +   |
| Cytopenia                     | +    | -    | -    | +    | +   |

- Regular monitoring (every 6 mo.)
- Clonality: either has karyotypic abnormality (≥2 metaphases) and/or a somatic mutation (>2% variant allele frequency)
- NGS should include at lease the 21 most frequently mutated MDS-related genes
- · Rarely mutated genes can also provide evidence for CHIP or CCUS

Greenberg PL, et al. J Natl Compr Canc Netw 2017;15(1):60-87





# Gene mutations have stereotyped positions in the MDS clonal hierarchy



R. Coleman Lindsley Hematology 2017;2017:447-452





## Outcome implications of gene mutations

| Gene               | Gene Pathway              |        | Prognostic impact |  |  |  |  |
|--------------------|---------------------------|--------|-------------------|--|--|--|--|
| SF3B1 RNA splicing |                           | 20-30% | Favourable        |  |  |  |  |
| TET2               | DNA methylation           | 20-30% | Unknown           |  |  |  |  |
| ASXL1              | Histone modification      | 15-20% | Adverse           |  |  |  |  |
| SRSF2a             | RNA splicing              | 15%    | Adverse           |  |  |  |  |
| DNMT3Aa            | DNA methylation           | 10%    | Adverse           |  |  |  |  |
| RUNX1              | Transcription             | 10%    | Adverse           |  |  |  |  |
| U2AF1              | RNA splicing              | 5-10%  | Adverse           |  |  |  |  |
| TP53               | Tumour suppressor         | 5-10%  | Adverse           |  |  |  |  |
| EZH2               | Histone modification      | 5-10%  | Adverse           |  |  |  |  |
| ZRSR2              | ZRSR2 RNA splicing        |        | Unknown           |  |  |  |  |
| STAG2              | STAG2 Cohesin complex     |        | Adverse           |  |  |  |  |
| IDH1/IDH2          | IDH1/IDH2 DNA methylation |        | Adverse           |  |  |  |  |
| CBL                | CBL Signalling            |        | Adverse           |  |  |  |  |
| NRAS               | NRAS Transcription        |        | Adverse           |  |  |  |  |
| BCOR               | BCOR Transcription        |        | Adverse           |  |  |  |  |





# Distinctive clinicopathologic associations

| Del 5q            | Female predominance; non-lobated MKs;   |  |  |  |
|-------------------|-----------------------------------------|--|--|--|
|                   | Response to lenalidomide                |  |  |  |
| Del 17p           | PPH neutrophils; TP53 mutation          |  |  |  |
| Isochromosome 17q | MDS/MPN with fibrosis; PPH neutrophils; |  |  |  |
|                   | ASXL1, SRSF2, SETBP1 mutation;          |  |  |  |
|                   | aggressive behavior                     |  |  |  |
| Del 20q           | Thrombocytopenia;                       |  |  |  |
|                   | Dysmegakaryopoiesis                     |  |  |  |
| Inv(3)            | Thrombocytosis, abnormal MKs            |  |  |  |
|                   |                                         |  |  |  |



<u>Table 1. Pre-CML Cases: Indications for Bone Marrow Study and Initial Peripheral Blood</u>
<u>Counts</u>

| Pre-<br>CML<br>Patients | Age<br>(Years) | Gender | Indications for bone marrow biopsy                                                             | WBC<br>(10 <sup>9</sup> /L) | Hemoglobin<br>(g/dL) | Platelets<br>(10 <sup>9</sup> /L) | Neutrophils*<br>(%) | Eosinophils*<br>(%) | Basophils*<br>(%) | Blasts*<br>(%) |
|-------------------------|----------------|--------|------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-----------------------------------|---------------------|---------------------|-------------------|----------------|
| 1                       | 62             | М      | Anemia and thrombocytopenia                                                                    | 6.2                         | 10.5                 | 197                               | 61                  | 1                   | 5                 | 0              |
| 2                       | 67             | F      | Persistent<br>leukocytosis and<br>BCR-ABL1 fusion<br>gene discovered<br>in peripheral<br>blood | 14.3                        | 13.5                 | 316                               | 69                  | 5                   | 4                 | 0              |
| 3                       | 44             | F      | Leukopenia and<br>neutropenia                                                                  | 3.6                         | 11.4                 | 225                               | 50                  | 0                   | 2                 | 0              |
| 4                       | 70             | М      | Follicular<br>lymphoma bone<br>marrow staging                                                  | 12.8                        | 13.6                 | 144                               | 73                  | 2                   | 2                 | 0              |
| 5                       | 70             | М      | Mild leukocytosis<br>and<br>thrombocytopenia                                                   | 14.7                        | 13.4                 | 89                                | 59                  | 1                   | 0                 | 0              |

<sup>\*</sup>Based on 100 cells differential count

A. Megakaryocytes in CML-CP are mostly small and hypolobated.

C. Megakaryocytes in leukemoid reaction have a normal appearance.



B. Megakaryocytes in pre-CML are an admixture of normal appearing cells, and small, hypolobated forms.



A. Microvessels in CML-CP are tortuous with abnormal branching.



В.

B. The vascular branching and tortuosity of microvessels are less pronounced in Pre-CML.

C. Microvessels in leukemoid reaction are few in number and generally straight. CD34 immunostains; x200.

Comparison of microvascular density and percentage of small megakaryocytes

Figure 1.



# Summary of MDS genetics

#### MDS pathogenesis involves dysfunction of 8 cellular pathways

- MicroRNA: let-7a, miR-16, miR-144/451
- Telomere dysfunction
- Epigenetic regulators: TET2, ASXL1, EZH2
- RNA splicing: SF3B1, SRSF2, U2AF1
- Cohesin complex: STAG2, RAD21, SMC3
- DNA damage response: *TP53*
- Transcription factors: RUNX1, ETV6
- Tyrosine kinase signaling: JAK2, NRAS, KRAS, BRAF
- Ribosome: haploinsufficiency for RPS14

#### Mutations are powerfully associated with clinical features

- Mutations in 5 genes are independent predictors of overall survival
  - TP53, EZH2, ASXL1, RUNX1, ASXL1
- Individual lesions associated with a specific clinical phenotype
  - Del(5q): 5q- syndrome
  - TP53: complex karyotype
  - SF3B1: MDS-RS
  - i(17)(q10): wild-type *TP53* and mutated *SETBP1* (54%)

### Conclusion

#### Classification: Defining more homogeneous MDS subtypes

MDS with characteristic genetic events:

- del(5q): haploinsufficiency of RPS14, SPARC
- MDS-RS: perturbation of genes involved in mitochondrial metabolism, mut SF3B1
- trisomy 8: genes involved in inflammatory and immune responses